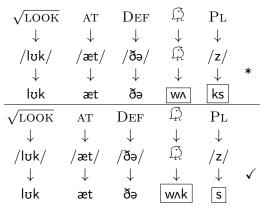
# Morpheme segmentation and UR Acquisition with UR Constraints

Max Nelson

University of Massachusetts Amherst

January 6, 2019

### The Problem


- Children must learn to identify word and morpheme boundaries, but must also learn underlying representations and the phonological grammar
- Phonological cues are used to aid segmentation as early as 8 mos. (Johnson and Jusczyk, 2001), but segmentation errors persist as late as 20 mos. (Babineau and Shi, 2011)
- Children begin forming lexical representations as early as 6 mos. (Bergelson and Aslin, 2017) and respond to phonological errors by 18 mos. (Swingley and Aslin, 2000)
- Segmentation must be learned simultaneously with phonological grammar and underlying forms

### Segmentation and UR Acquisition

- Existing UR learners take the set of surface forms as a starting point (Alderete et al., 2005; Merchant and Tesar, 2008; Jarosz, 2015) implying that segmentation is learned before URs
- Existing statistical models of segmentation do not make use of lexical representations or phonology beyond phonotactics (Brent and Cartwright, 1996; Goldwater et al., 2009; Daland, 2013; Exceptions include Naradowsky and Goldwater, 2009; Narasimhan et al., 2015; Johnson et al., 2015)
- Segmentation and URs are learned in parallel and are mutually informing

### Segmentation and UR Acquisition

Consider adult-like segmentation of novel words in non-novel contexts:



### **UR** Constraints

- Specify the UR for an input, which has no phonological content (Apoussidou, 2007; Pater et al., 2012; Smith, 2015)
- 2 Candidates are (Input, UR, SR) triplets
- URs are selected in parallel with phonological optimization, allowing phonological "consequences" of a UR to affect its likelihood
  - Choosing a non-default UR and mapping faithfully is a viable repair strategy

| ${Ind} + ant$                                            | Dep | Max | HIATUS | Ind=/ə/ | Ind=/ən/ |
|----------------------------------------------------------|-----|-----|--------|---------|----------|
| a. $9+$ ænt $ ightarrow$ $9$ ænt                         |     |     | *W     | L       | *W       |
| $^{oxed{100}}$ b. ən $+$ ænt $	o$ ənænt                  |     |     |        | *       |          |
| c. $9+$ ænt $\rightarrow$ $9$ nænt                       | *W  |     |        | L       | *W       |
| d. $\operatorname{an+}$ ent $\to$ $\operatorname{a}$ ent |     | *W  | *W     | *       |          |

#### Overview

Goal: Learn phonological alternations, URs (as weighted URCs), and segmentation in parallel

- URs are stored as URCs which are induced from observed strings
- 2 Candidates for an input set of MS features are generated from the URCs
- A Maximum Entropy Grammar (Goldwater and Johnson, 2003) is learned, defining a probability distribution over UR-SR mappings and correspondence relations given an input set of morphosyntactic (MS) features

#### **UR** Constraint induction

- **1** Given observed string S and corresponding meanings  $M_1...M_n$
- **2** For every exhaustive segmentation of S that yields n nonempty substrings  $s_1...s_n$ :
  - For c in the set of UR constraints of the form  $M_{1...n} = /s_{1...n}/$ :
    - If c not in CoN, add c to CoN with weight w
- **3** Example,  $\{M1,M2\} \rightarrow [abc]$ :

| Segmentation | Constraints added                |
|--------------|----------------------------------|
| a.bc         | M1=/a/, M2=/a/, M1=/bc/, M2=/bc/ |
| ab.c         | M1=/ab/, M2=/ab/, M1=/c/, M2=/c/ |

### Assumptions<sup>b</sup>

- The learner is provided with the number of morphosyntactic features in a string
  - Segmentation is simplified, not uncommon in morphology induction (Naradowsky and Goldwater 2009; Narasimhan et al. 2015)
  - IO correspondence relations are not provided, removing an assumption of previous UR learners
- For every morpheme there must be at least one surface form that is a faithful mapping from the underlying form
- Severy morpheme in the input must have a correspondent in the output
- Every segment in the output must be associated with some morpheme in the input
- **5** The set of segments corresponding to a single morpheme must be contiguous

- lacktriangledown URn is the set of all URs specified by URCs in  $\mathrm{Con}$  for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

$$\{M1_1,M2_2\} \parallel \{M1\}=a \mid \{M1\}=ab \mid \{M2\}=bc \mid \{M2\}=c$$

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

| $\{M1_1,M2_2\}$                             | $\{M1\}=a$ | $\{M1\}$ =ab | {M2}=bc | {M2}=c |
|---------------------------------------------|------------|--------------|---------|--------|
| a. / <b>a<sub>1</sub>.bc</b> <sub>2</sub> / |            | -1           |         | -1     |

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

| $\{M1_1,M2_2\}$                                       | $\{M1\}=a$ | $\{M1\}$ =ab | {M2}=bc | {M2}=c |
|-------------------------------------------------------|------------|--------------|---------|--------|
| a. / <b>a</b> <sub>1</sub> . <b>bc</b> <sub>2</sub> / |            | -1           |         | -1     |
| b. /a <sub>1</sub> .c <sub>2</sub> /                  |            | -1           | -1      |        |

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

| $\{M1_1,M2_2\}$                                       | {M1}=a | $\{M1\}$ =ab | ${M2}=bc$ | {M2}=c |
|-------------------------------------------------------|--------|--------------|-----------|--------|
| a. / <b>a</b> <sub>1</sub> . <b>bc</b> <sub>2</sub> / |        | -1           |           | -1     |
| b. /a <sub>1</sub> .c <sub>2</sub> /                  |        | -1           | -1        |        |
| c. /ab <sub>1</sub> .bc <sub>2</sub> /                | -1     |              |           | -1     |

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

| $\{M1_1,M2_2\}$                        | {M1}=a | ${M1}=ab$ | {M2}=bc | {M2}=c |
|----------------------------------------|--------|-----------|---------|--------|
| a. /a <sub>1</sub> .bc <sub>2</sub> /  |        | -1        |         | -1     |
| b. /a <sub>1</sub> .c <sub>2</sub> /   |        | -1        | -1      |        |
| c. /ab <sub>1</sub> .bc <sub>2</sub> / | -1     |           |         | -1     |
| d. /ab <sub>1</sub> .c <sub>2</sub> /  | -1     |           | -1      |        |

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

| $\{M1_1,M2_2\}$                                       | {M1}=a | $\{M1\}$ =ab | {M2}=bc | {M2}=c |
|-------------------------------------------------------|--------|--------------|---------|--------|
| a. / <b>a</b> <sub>1</sub> . <b>bc</b> <sub>2</sub> / |        | -1           |         | -1     |
| b. /a <sub>1</sub> .c <sub>2</sub> /                  |        | -1           | -1      |        |
| c. /ab <sub>1</sub> .bc <sub>2</sub> /                | -1     |              |         | -1     |
| d. / <b>ab</b> <sub>1</sub> .c <sub>2</sub> /         | -1     |              | -1      |        |

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- ② For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

| {M1 <sub>1</sub> ,M2 <sub>2</sub> }           | {M1}=a | $\{M1\}$ =ab | {M2}=bc | {M2}=c |
|-----------------------------------------------|--------|--------------|---------|--------|
| a. /a <sub>1</sub> .bc <sub>2</sub> /→[abc]   |        | -1           |         | -1     |
| b. /a <sub>1</sub> .c <sub>2</sub> /→[ac]     |        | -1           | -1      |        |
| c. /ab <sub>1</sub> .bc <sub>2</sub> /→[abbc] | -1     |              |         | -1     |
| d. /ab <sub>1</sub> .c <sub>2</sub> /→[abc]   | -1     |              | -1      |        |

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

| $\{M1_1,M2_2\}$                             | $\{M1\}=a$ | $\{M1\}$ =ab | ${M2}=bc$ | {M2}=c | Max(a) |
|---------------------------------------------|------------|--------------|-----------|--------|--------|
| a. /a <sub>1</sub> .bc <sub>2</sub> /→[abc] |            | -1           |           | -1     |        |
| b. /a <sub>1</sub> .c <sub>2</sub> /→[ac]   |            | -1           | -1        |        |        |
| c. $/ab_1.bc_2/\rightarrow [abbc]$          | -1         |              |           | -1     |        |
| d. $/ab_1.c_2/\rightarrow [abc]$            | -1         |              | -1        |        |        |

- **1**  $UR_n$  is the set of all URs specified by URCs in Con for  $M_n$
- **2** For an input  $M_1...M_n$ :
  - i. All underlying forms are generated by  $UR_1 \times UR_2 \times ... \times UR_n$

| {M1 <sub>1</sub> ,M2 <sub>2</sub> }           | $\{M1\}=a$ | $\{M1\}$ =ab | {M2}=bc | {M2}=c | Max(a) |
|-----------------------------------------------|------------|--------------|---------|--------|--------|
| a. /a <sub>1</sub> .bc <sub>2</sub> /→[abc]   |            | -1           |         | -1     |        |
| b. /a <sub>1</sub> .c <sub>2</sub> /→[ac]     |            | -1           | -1      |        |        |
| c. /ab <sub>1</sub> .bc <sub>2</sub> /→[abbc] | -1         |              |         | -1     |        |
| d. /ab <sub>1</sub> .c <sub>2</sub> /→[abc]   | -1         |              | -1      |        |        |
| e. /a <sub>1</sub> .bc <sub>2</sub> /→[bc]    |            | -1           |         | -1     | -1     |
| f. /a <sub>1</sub> .c <sub>2</sub> /→[c]      |            | -1           | -1      |        | -1     |
| g. /ab <sub>1</sub> .bc <sub>2</sub> /→[bbc]  | -1         |              |         | -1     | -1     |
| h. $/ab_1.c_2/\rightarrow [bc]$               | -1         |              | -1      |        | -1     |

### Learning algorithm

- Online, error driven, stochastic gradient descent
- Minimizing negative log likelihood of data, no regularization
- In standard MaxEnt learning:

$$\delta w_i \propto c_i(y) - \sum_{x \in \Omega_M} c_i(x) p(x)$$

**4** However we don't know  $c_i(y)$ , because the observed mapping {M1,M2}→[abc] does not provide direct information about the UR or segmentation

| $\{M1_1,M2_2\}$                  | $\{M1\}=a$ | $\{M1\}$ =ab | $\{M2\}=bc$ | $\{M2\}=c$ | Dep(c) |
|----------------------------------|------------|--------------|-------------|------------|--------|
| $a. /a_1.bc_2/\rightarrow [abc]$ |            | -1           |             | -1         |        |
| b. $/ab_1.c_2/\rightarrow [abc]$ | -1         |              | -1          |            |        |
| c. $/a_1.b_2/\rightarrow [abc]$  |            | -1           |             | -1         | -1     |

### **Expectation Maximization**

Probabilistic URs and segmentation

- Expectation maximization, general algorithm for MLE with incomplete data (Dempster et al., 1977)
- Wistory of application to phonological learning with structural ambiguity (Tesar and Smolensky, 1998; Jarosz, 2006; Pater et. al., 2012)
- The E step assigns a probabilistic structure to the observed form, the M step updates as normal, maximizing the probability of the structure assigned in E
  - F:

$$\hat{c}_i(y) = \sum_{z \in Z_y} c_i(z) \frac{p(z)}{\sum_{z \in Z_y} p(z)}$$

• M:

$$\delta w_i = \hat{c}_i(y) - \sum_{x \in \Omega_M} c_i(x) p(x)$$

### Test case: English Plural

| English Phrase | Input String | Input Morphemes |
|----------------|--------------|-----------------|
| a dog          | ədəg         | IND, DOG        |
| the dog        | ðədəg        | DEF, DOG        |
| the dogs       | ðədɔgz       | DEF, DOG, PL    |
| a cat          | əkæt         | IND, CAT        |
| the cat        | ðəkæt        | DEF, CAT        |
| the cats       | ðəkæts       | DEF, CAT, PL    |
| a pie          | әраі         | IND, PIE        |
| the pie        | ðәраi        | DEF, PIE        |
| the pies       | ðəpaiz       | DEF, PIE, PL    |

### **English Plural**

Possible solutions

- $\textbf{ 1} \ \, \text{The plural morpheme is underlyingly } / \text{z} / \ \, \text{and devoices} \\ \text{following voiceless}$ 
  - PL=/z/ and AGREE are high
  - $\bullet \ \operatorname{ID}(Vol)$  and other URCs for  $\operatorname{PL}$  are low
- 2 The plural morpheme underlyingly alternates between /z/ and /s/ to map faithfully without violating  $_{\rm AGREE}$ 
  - AGREE and ID(VOI) are high
  - PL=/z/ and PL=/s/ are low with PL=/z/ above PL=/s/

### Test case: English Plural

- **1** 2,000 iterations with a learning rate of 0.1 and all weights initialized at 1.0
- 2 In all phrases the probability of correct segmentation candidates is above 0.98

| Constraint | Weight  |
|------------|---------|
| PL=/z/     | 10.61   |
| IND=/ə/    | 9.15    |
| AGREE      | 8.96    |
| DOG=/dog/  | 8.72    |
| CAT=/kæt/  | 8.52    |
| DEF=/ðə/   | 7.92    |
| PIE=/pai/  | 7.67    |
| Id(Voi)    | 3.60    |
| PL=/s/     | 1.12    |
|            | < 0.065 |

### Test case: English Plural

- 1 2,000 iterations with a learning rate of 0.1 and all weights initialized at 1.0
- 2 In all phrases the probability of correct segmentation candidates is above 0.98

| Constraint | Weight           |  |
|------------|------------------|--|
| IND=/ək/   | 0.06             |  |
| DEF=/ðəp/  | 0.009            |  |
| DOG=/g/    | 9.40 <i>E</i> -5 |  |
| PL=/gz/    | 1.76 <i>E</i> -5 |  |
| CAT=/kæ/   | 1.56E - 5        |  |
| PIE=/p/    | 3.13E - 6        |  |
| PIE=/i/    | 2.17E - 6        |  |
| /cbe/=qni  | 1.31E - 6        |  |
|            | < 1.31E - 6      |  |

### Why assimilation and not allomorphy?

- Recall that with URCs we can choose an alternative UR rather than violate FAITH
- 2 In 97 of 100 runs assimilation is learned
- 3 Weighting arguments for assimilation are two-tiered, for allomorphy are three-tiered
- 4 Randomly initialized weights between 0 and 5 satisfy assimilation 14.68% of the time, allomorphy 3.86%

## Assimilation:

### Allomorphy:

AGREE 
$$\{PL\}=/z/$$
 AGREE  $ID(VOI)$ 
 $ID(VOI)$   $\{PL\}=/s/$   $\{PL\}=/s/$ 

### Segmenting novel words

- The final grammar can be used to segment novel words in familiar contexts
- **2** Below are segmentation candidates for  $\{WUG, PL\} \rightarrow [w \land gz]$  and  $\{WUK, PL\} \rightarrow [w \land ks]$

| UR        | SR    | Probability | UR                 | SR    | Probability |
|-----------|-------|-------------|--------------------|-------|-------------|
| /wng/+/z/ | wug.z | 0.9853      | /wʌk/+/z/          | wʌk.s | 0.9413      |
| /wng/+/s/ | wug.z | 0.0020      | /wʌk/+/s/          | wʌk.s | 0.0198      |
| /wn/+/gz/ | wu.gz | 0.0049      | /wʌ/+/kz/          | w∧.ks | 0.0015      |
| /wn/+/gs/ | wu.gz | 0.0015      | /wʌ/+/ks/          | w∧.ks | 0.0046      |
| /w/+/ngz/ | w.ugz | 0.0049      | /w/+/ʌkz/          | w.ʌks | 0.0015      |
| /w/+/ngs/ | w.ugz | 0.0015      | $/w/+/\Lambda ks/$ | w.ʌks | 0.0046      |

### Conclusions

1 Morpheme identity is a type of hidden structure

A joint model is able to learn URs, segmentation, and alternations. The final grammar is able to segment novel words in non-novel environments

An explicit mechanism to learn segmentation may not be necessary given learning of URs and IO correspondence relations

## Thank you

Particular thanks to Katherine Blake, Gaja Jarosz, Andrew Lamont, Joe Pater, Brandon Prickett, UMass Sound Workshop, and everyone at NECPHON 2018

## Weighting arguments for assimilation and allomorphy

| Assimilation:             | Allomorphy                |
|---------------------------|---------------------------|
| AGREE > ID(VOI)           | PL=/z/ > PL=/s/           |
| PL=/z/>PL=/s/             | ID(VOI) + PL=/s/ > PL=z   |
| PL=/z/ > ID(VOI) + PL=/s/ | AGREE + PL=/s/ > PL=z     |
| PL=/z/ + ID(VOI) > PL=/s/ | PL=/z/ + ID(VOI) > PL=/s/ |
|                           | PL=/z/ + AGREE > PL=/s/   |