
Revisiting Abstract Underlying Representations
Evidence from a learning model of probabilistic URs

Max Nelson

May 23, 2019

1 / 36



Introduction
Abstract Underlying Representations

1 UR’s do not always map faithfully to SR’s. What is the extent to
which UR’s can differ from their corresponding SR’s?

2 Kenstowicz and Kisseberth (1977) step through the continuum,
conclude that the UR-SR relationship cannot be restricted

2 / 36



Introduction
Arbitrarily Abstract Underlying Representations

1 The less restrictions placed on the UR, the larger search space the learner is
expected to navigate

2 Phonological learning and UR learning are parallel, ambiguity grows with UR
space

[dOgz] [kæts]

/dOg+z/→[dOgz] /kæt+z/→[kæts]
/dOG+z/→[dOgz] /kæt+z/→[kæts]
/dOg+s/→[dOgz] /kæt+s/→[kæts]
/dOG+s/→[dOgz] /kæs+s/→[kæts]
... ...

3 Given a single observed surface form, what are the limits on the space of
possible URs?

3 / 36



Introduction
Rich Representations

1 These problems may be solvable (Tesar, 2017), but is it necessary?

2 Conceptualization of URs has changed since 1977:
• Priority Constraints (Bonet, Lloret, and Mascaró 2003; Mascaró 2007)
• Lexical/Underlying Representation Constraints (Apoussidou, 2007;

Pater et al, 2012; Smith, 2015)
• Gradient representations (Smolensky and Goldrick, 2016; Zimmerman,

2018)

3 Assumptions that have been thrown out:
• All morphologically related forms are derived from a single UR
• A UR is a string of discrete phonological segments or features

4 / 36



Introduction
This project

• Goal: Determine to what extent, if any, previous arguments in favor
of abstractness still hold

• Method:

1 Implement a model that learns probabilistic URs in parallel with the
phonological grammar

2 Test the extent to which this model is able to learn an alternation that
has previously been cited as an argument for abstractness when the
model is unable to learn abstract URs

• Focus on concrete vs. composite URs
• Concrete URs surface faithfully at least once
• Composite URs contain a novel combination of segments or features

that appear in SRs

5 / 36



Roadmap

1 Background
• UR Constraints
• Maximum Entropy grammar and optimization
• Structural ambiguity

2 Model
• Maximum Entropy grammar with URCs, URs as hidden structure
• UR Constraint induction
• Candidate generation

3 Test case - Palauan

4 Conclusions

6 / 36



Background
UR Constraints

1 Specify the UR for an input, which has no phonological content
(Apoussidou, 2007; Pater et al, 2012; Smith, 2015)

2 Candidates are (Input, UR, SR) triplets

3 URs are selected in parallel with phonological optimization, allowing
phonological “consequences” of a UR to affect its likelihood

• Choosing a non-default UR and mapping faithfully is a viable repair
strategy

Ind + ant Dep Max Hiatus Ind=/@/ Ind=/@n/

a. @+ænt → @ænt ∗W L ∗W
� b. @n+ænt → @nænt ∗

c. @+ænt → @nænt ∗W L ∗W
d. @n+ænt → @ænt ∗W ∗W ∗

7 / 36



Background
Maximum Entropy Grammar and Learning

1 MaxEnt (Goldwater and Johnson, 2003) is a weighted probabilistic
variant of OT, weights are non-negative and violations are negative

2 Probability of a an output x given the input y :

p(x | y) =
eH(x,y)∑

γ∈Y(x) e
H(x,γ)

where:

H(x ,y) =
m∑
i

wici (x , y)

8 / 36



Background
Maximum Entropy Grammar and Learning

1 Learning is the process of discovering the set of weights, w, that
produce the set of observed surface forms (in their observed
proportions)

2 Optimize weights with respect to regularized negative log-likelihood:

L = −(
∑

(x ,y)∈T

log p(x | y)) + R(w)

3 Stochastic Gradient Descent:

δwi ∝
Observed︷ ︸︸ ︷
ci (x , y)−

Expected︷ ︸︸ ︷∑
γ∈Y(x)

ci (x , γ)p(γ | x)

9 / 36



Background
Structural Ambiguity

1 Latent structure introduces ambiguity:
• Prosodic structure: is [kapáta] an instance of [(kapá)ta] or [ka(páta)]?
• URs: is [dOgz] an instance of /dog+z/→[dOgz] or /dog+s/→ [dOgz]

2 Learner can’t calculate Observed :

δwi ∝
Observed︷ ︸︸ ︷
ci (x , y)−

Expected︷ ︸︸ ︷∑
γ∈Y(x)

ci (x , γ)p(γ | x)

3 Expectation Maximization (Dempster et al 1977) - Use the current grammar
to (probabilistically) parse ambiguous forms (Tesar and Smolensky 1998,
Jarosz 2013)

4 Probability of a surface form is the sum probability of all overt-consistent
forms (Pater et al 2012)

10 / 36



Current model
UR Constraints in a MaxEnt Grammar

1 Trained on (Morphsyntactic features, surface form) tuples

2 Same probability function but with (ur,sr) pairs as the mapping, conditioned
on morphosyntactic features:

p((ur , sr) | M) =
e
∑m

i wi ci (M,(ur ,sr))∑
(ur ′,sr ′)∈Y(M) e

∑
i wi ci (M,(ur ′,sr ′))

(Pater et al 2012)

3 Similarly same update function:

δwi ∝ ci (M, (ur , sr))−
∑

(ur ′,sr ′)∈Y(M)

ci (M, (ur ′, sr ′))p((ur ′, sr ′) | M)

11 / 36



Current model
UR Constraints in a MaxEnt Grammar

1 Trained on (Morphsyntactic features, surface form) tuples

2 Same probability function but with (ur,sr) pairs as the mapping, conditioned
on morphosyntactic features:

p((ur , sr) | M) =
e
∑m

i wi ci (M,(ur ,sr))∑
(ur ′,sr ′)∈Y(M) e

∑
i wi ci (M,(ur ′,sr ′))

(Pater et al 2012)

3 Similarly same update function:

δwi ∝ ci (M, (ur , sr))−
∑

(ur ′,sr ′)∈Y(M)

ci (M, (ur ′, sr ′))p((ur ′, sr ′) | M)

12 / 36



Current model
UR Constraints in a MaxEnt Grammar

1 Adapt Jarosz (2013)’s Expected Interpretive Parsing to MaxEnt to
assign probabilistic hidden structure

2 Use the current grammar to define probability distribution over all
mappings from the input to observed surface form - distribution over
URs

3 Estimate violations of (M, sr) for any constraint by average violations
of all candidates weighted by their probability

4 Given Z (sr ,M), which returns the set of candidate (ur,sr) pairs which
match the overt form of sr :

ĉi (M, sr) =

∑
π∈Z(sr) ci (M, π)p(π | M)∑

π∈Z(sr) p(π | M)

13 / 36



Current model
UR Constraint induction

1 URCs are the lexicon - must be learned

2 Given observed string S and corresponding meanings M1...Mn

3 For every exhaustive segmentation of S that yields n nonempty
substrings s1...sn:

• For c in the set of UR constraints of the form M1...n=/s1...n/:
• If c not in Con, add c to Con with weight w

Example, {M1,M2}→[abc]:
Segmentation Constraints added

a.bc M1=/a/, M2=/a/, M1=/bc/, M2=/bc/
ab.c M1=/ab/, M2=/ab/, M1=/c/, M2=/c/

4 Composite URCs optionally induced as new concrete URCs are added
• Align new constraint to all existing and flip the segments at all

combinations of indices of any substitutions

14 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

15 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c

16 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c

a. /a1.bc2/c -1 -1

17 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c

a. /a1.bc2/c -1 -1

b. /a1.c2/ -1 -1

18 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c

a. /a1.bc2/ -1 -1

b. /a1.c2/ -1 -1

c. /ab1.bc2/ -1 -1

19 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c

a. /a1.bc2/ -1 -1

b. /a1.c2/ -1 -1

c. /ab1.bc2/ -1 -1

d. /ab1.c2/ -1 -1

20 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c

a. /a1.bc2/ -1 -1

b. /a1.c2/ -1 -1

c. /ab1.bc2/ -1 -1

d. /ab1.c2/ -1 -1

21 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c

a. /a1.bc2/ -1 -1

b. /a1.c2/ -1 -1

c. /ab1.bc2/ -1 -1

d. /ab1.c2/ -1 -1

This is the complete space of possible URs for {M1,M2}

22 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c

a. /a1.bc2/→[abc] -1 -1

b. /a1.c2/→[ac] -1 -1

c. /ab1.bc2/→[abbc] -1 -1

d. /ab1.c2/→[abc] -1 -1

23 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c Max(a)

a. /a1.bc2/→[abc] -1 -1

b. /a1.c2/→[ac] -1 -1

c. /ab1.bc2/→[abbc] -1 -1

d. /ab1.c2/→[abc] -1 -1

24 / 36



Current model
Candidate Generation

1 URn is the set of all URs specified by URCs in Con for Mn

2 For an input M1...Mn:

i. All underlying forms are generated by UR1 UR2 ... URn

{M11,M22} {M1}=a {M1}=ab {M2}=bc {M2}=c Max(a)

a. /a1.bc2/→[abc] -1 -1

b. /a1.c2/→[ac] -1 -1

c. /ab1.bc2/→[abbc] -1 -1

d. /ab1.c2/→[abc] -1 -1

e. /a1.bc2/→[bc] -1 -1 -1

f. /a1.c2/→[c] -1 -1 -1

g. /ab1.bc2/→[bbc] -1 -1 -1

h. /ab1.c2/→[bc] -1 -1 -1

25 / 36



Simulations

1 Test the model on alternations that have been argued to require
different degrees of abstract URs

2 For today, Palauan
• Composite URs which contain novel combination of segments that

occur across different surface forms
• Train a model with and without the ability to induce composite URs

3 Are the composite URs necessary? Can the model learn and
generalize the alternation without them?

26 / 36



Simulations
Palauan

1 Palauan alternation from Flora (1974), banner example for composite
URs (McCarthy, 2011)

2 No final vowels, stress must be final, unstressed vowels must be [@]

3 Composite analysis - underlying /Pabu/, /mada/, and /Puri/

27 / 36



Simulations
Palauan

1 Constraints: Ident(Vowel), Max(Vowel), Reduce,
FinalStress, *Final-Vowel, *@́

2 Overall probability correct by hyperparameters (averaged over 10 runs
of 2,000 iterations with learning rate = 0.2)

28 / 36



Simulations
Palauan

1 Model is able to succeed with and without composite URs, in both
cases best performance is L2 prior with 0.0 initialization

2 Sample grammars:

Concrete Abstract
Constraint Weight Constraint Weight

k=/k/ 7.076 hur=Puri 6.236
Stress-Final 6.382 Stress-Final 6.161
mam=/@mam/ 5.381 hab=Pabu 6.057
*@́ 4.924 mad=mada 5.908
Reduce 4.507 Reduce 5.365
*Final-Vowel 4.427 k=/k/ 5.268
hab=/Pab/ 3.699 mam=/mam/ 5.250
mad=/mad/ 3.688 *Final-Vowel 4.807
hur=/Pur/ 3.459 *@́ 3.886
hur=/P@ri/ 2.336 mad=/m@da/ 1.77
hab=/P@bu/ 2.158 mad=/mad@/ 1.58
mad=/m@da/ 2.004 hur=/P@ri/ 1.462
Max(v) 1.794 hab=/P@bu/ 1.183
...(50) < 0.972 ...(330) < 1.040

29 / 36



Simulations
Palauan

1 Model is able to succeed with and without composite URs, in both
cases best performance is L2 prior with 0.0 initialization

2 Sample grammars:

Concrete Abstract
Constraint Weight Constraint Weight

k=/k/ 7.076 hur=Puri 6.236
Stress-Final 6.382 Stress-Final 6.161
mam=/@mam/ 5.381 hab=Pabu 6.057
*@́ 4.924 mad=mada 5.908
Reduce 4.507 Reduce 5.365
*Final-Vowel 4.427 k=/k/ 5.268
hab=/Pab/ 3.699 mam=/mam/ 5.250
mad=/mad/ 3.688 *Final-Vowel 4.807
hur=/Pur/ 3.459 *@́ 3.886
hur=/P@ri/ 2.336 mad=/m@da/ 1.77
hab=/P@bu/ 2.158 mad=/mad@/ 1.58
mad=/m@da/ 2.004 hur=/P@ri/ 1.462
Max(v) 1.794 hab=/P@bu/ 1.183
...(50) < 0.972 ...(330) < 1.040

30 / 36



Simulations
Palauan

1 Model is able to succeed with and without composite URs, in both
cases best performance is L2 prior with 0.0 initialization

2 Sample grammars:

Concrete Abstract
Constraint Weight Constraint Weight

k=/k/ 7.076 hur=Puri 6.236
Stress-Final 6.382 Stress-Final 6.161
mam=/@mam/ 5.381 hab=Pabu 6.057
*@́ 4.924 mad=mada 5.908
Reduce 4.507 Reduce 5.365
*Final-Vowel 4.427 k=/k/ 5.268
hab=/Pab/ 3.699 mam=/mam/ 5.250
mad=/mad/ 3.688 *Final-Vowel 4.807
hur=/Pur/ 3.459 *@́ 3.886
hur=/P@ri/ 2.336 mad=/m@da/ 1.77
hab=/P@bu/ 2.158 mad=/mad@/ 1.58
mad=/m@da/ 2.004 hur=/P@ri/ 1.462
Max(v) 1.794 hab=/P@bu/ 1.183
...(50) < 0.972 ...(330) < 1.040

31 / 36



Simulations
Palauan

1 Abstract solution is as expected, URs are /Pabu/, /mada/, and
/Puri/, final vowels delete, stress is final, nonstressed vowels reduce

2 Concrete solution has two URs for each word
• /Pab/ (CVC) and /P@bu/ (C@CV )
• Use CVC when unsuffixed or suffixed with /@mam/, reduce if necessary
• Use C@CV when suffixed with -k

3 Is there an empirical reason to prefer the abstract solution?

32 / 36



Simulations
Palauan

1 Do the two analyses make different generalizations?

2 Phonotactic generalization to novel /kaga/ and /kagapak/, no UR
constraints

3 Concrete analysis generalizes final vowel deletion despite never
‘seeing’ vowel deletion in the language

• *Final-Vowel is high because it motivates UR selection in the
unsuffixed form, Max(V) is pushed down by the prior

33 / 36



Simulations
Palauan - Discussion

1 The Palauan alternation is learnable without abstract URs

2 Including or excluding abstract URs does not change the behavior
predicted by the grammar

3 Heuristics used to reduce search space - still sufficiently different (63
vs 343 constraints) to affect learning

34 / 36



Conclusions

1 Abstract URs are not necessary to learn and generalize the Palauan
alternation

• Including abstract URs slows learning by expanding the search space

2 In progress work not presented suggests that more abstract URs
(underspecified, neutralized) are also learnable with probabilistic
concrete URs

3 Previous arguments in favor of abstract URs may no longer hold

35 / 36



..

Thank you!

36 / 36


