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Learning and generalizing phonotactics with recurrent neural networks

Introduction Neural Language Models Results
Humans display gradient preferences towards unattested sequences of sounds » Language modeling - defining a probability distribution over sequences, » Correlation coefficients between human and average model judgement
» Phonotactic models that predict gradient preferences can give insight operationalized as next element prediction Overall Attested Unattested Marginal
into computations and representations (Hayes and Wilson, 2008; Albright, » Elman (1990) - sRNNs to predict upcoming segment, allow probability to H&W 0759  0.000 0 686 0.362
2009; Daland et al, 2011; Futrell et al, 2017) be conditioned on entire preceding sequence Feat 0868 0354 0.823 0.551
» One such preference is sonority sequencing » Bengio (2003) - Continuous representations in neural language models Emb 0866 0365 0.765 0.609
= Crosslinguistically attested preference for onset clusters which = Random real valued representation, optimized with objective, Tied Emb 0.853  0.491 0.738 0.664
increase in sonority distributional information
= |s a built in bias towards certain sonority profiles necessary to account » Mikolov (2010) - Continuous representations in RNN language models T T S
for observed sonority sequencing effects? » Mirea and Bicknell (2019) - Continuous representations for next phoneme o Ly
prediction with LSTMs L o h 1
Goal: Can gradient human sonority sequencing preferences be learned from o:j: .t £y 2 :: . o:jj o :AX;A;Ax;‘ : ” A;:ﬂf wio -
lexical statistics alone? Ut | Yt+1 Yt+2 g S T Lt . . =
A IR o e : -
W, W, nj,,T Are the embeddings capturing phonological features?

» PCA of tied embeddings - separation of sonorants, obstruents, and vowels

Background h,

W, N ht—l— 1w, \‘\\ > ht—|—2
Not the first with this question (Berent et al 2007, 2008; Albright, 2007; Ren et al, ”'T T T PC1 and PC2 from 24d embeddings (8.92% explained variance)

2010; Daland et al 2011; Jarosz and Rysling 2017) 4_ .
Tt Tt41 Tt+2 3_ 6° 5
» Daland et al. (2011) collect human judgements, train phonotactic models 2+ £ ttj <
: : ~ k h
on CELEX, check correlations between model and human judgements 11 5.9 ;‘Lfé)
= Run on syllabified and unsyllabified data Z o p % S d e
S o
= Best result: HW phonotactic learner (Hayes and Wilson, 2008) Current Approach -1- d3 4 ; =
V
lati th Onsets Tails —2 - f “d\s MIJ d
> Correlations with aggregate Attested | Marginal | Unattested » HW and several sSRNN LMs trained on 133,000 word CMU dictionary, no _3 . m
: -atrf
huma.n ?udgements of words };Nptrr ;;V %z }]W Evélfr;;r _?bid syllable annotation T3 2 1 Com('; - li > 3 a
containing attested, unattested, kw lqukl f?lf)m (fin m11<11ﬂ '“SIIC’l » Fit models used to make predictions for all items in Daland et al’’s A
. grglfr | vlbw g pklm -€pI . . . i correct
and marginally attested onsets fldrbr | dwfw | Intllt igif experiment, evaluated by measuring linear correlation between model > Probe task: Can a — vg Pl : )
of varying sonority profiles bl sn sm | vr Ow rn rd rg -£71¢ and human judgement 1-|ayer softmax classifier Feature Positive Negatlve Overall
: : . : - : SYLLABIC 0.981 0.970 0.975
> Best results from key models: » Two different phoneme representations, features and embeddings identify feature
: : VP CONSONANTAL |0.988  0.914 0.951
Model  Overall Attested Marginal Unattested » Feature models - fixed vector 26 ternary features (Hayes, 2009) specifications from NSORAN
: TN : : SONORA 0.823  0.927 0.875
3H 0.24 0.30 0.22 -0.26 » Embedding models - randomly initialized vector in R?* embeddings? NORANT
: _ L e VOICE 0.666  0.645 0.655
HW 0.80 0.00 0.00 0.70 » All models trained on next phoneme prediction, optimizing cross-entropy > 1000 classifiers for any
IWsyll] 0.83 0.00 0.0 0.76 A X feature with at least 7 CONTINUANT 0.469  0.392 0.431
y ' : ' ' L(y,y) =-y - log(y) .. . 0490 0.702 0.596
, . positives and negatives ANTERIOR A3 7 '
» To generalize models must represent similarity between segments » Input and output embeddings are optionally tied (Press and Wolf, 2018)
> All models perform better on syllabified data » Hyperparameters selected by grid search on 70/30 split of CMU dict. )
» Projection is learnable from lexical statistics provided featural o Conclusion
Predictions

representations and syllabification

» Neural models predict sonority projection, also make gradient predictions
» Aside: This result has been shown to not hold for Polish (Jarosz, 2017) P Y Pro) 5 P

1. Neural models will be able to learn and generalize sonority sequencing as

well as existing models for attested onsets

Secondary goal: Can sonority sequencing preferences be learned with 2. Embedding models will learn representations that capture sonority > Distributional features predict behavior pretty well - but linguistically

unsyllabified data and without prespecified linguistic features? classes and predict sonority projection informed features better predict generalization




